swapping surfaces: getting surfaces by swapping a curve along an other curve (D.TEBER)
Projection of simple 1D curves on to a plane curve
-4<x<4 , x(step)=0.2
-4<y<4 , y(step)=0.2
Fx(x,y)= x
Fy(x,y)= y
Fz(x,y)= c*e^(-(x-a)^2-(y-b)^2)
a=-2, b=1, c=3
a=0, b=-2, c=2
a=2, b=-3, c=2
United Planes
Fz(x,y)= 1*e^(-(x-2 )^2 - (y-3 )^2) +
2*e^(-(x-2 )^2 - (y-(-3))^2) +
2*e^(-(x-0 )^2 - (y-(-3))^2) +
3*e^(-(x-(-2))^2 - (y-1 )^2)
River and Valey
Bordering cubic curves with plane curves,
Or
Filling plane curve surfaces with cubes.
(D.TEBER)
Valley
-5<x<5 , x(step)=0.25
-5<y<5 , y(step)=0.25
Fz(x,y)= -1/(x*x+1) + 2/(y*y+1) + 0.5*sin(5*r)/r
r= (x*x+y*y)^0.5
River
1<z<2 , z(step)=0.1
Fx(x,y,z)= x
Fy(x,y,z)= y
Fz(x,y,z)= defined* z
defined=(1/[z<=[-1/(x*x+1) + 2/(y*y+1)
+0.5*sin(5*r)/r] ] )
Two Torus
Simple Function Curves | Simple Space Curves | Polar Curves | Plane Curves | Spherical Curves | Cylindrical Curves | Cubic Curves | Integral | Knots | Stages | Random | Stars | Astronomy | Art | Other Curves | Architectural-Industrial Forms | Swapping Surfaces | Logo Design